Multiple-Frame Surveys for a Multiple-Data-Source World

2021 Waksberg Lecture Sharon L. Lohr www.sharonlohr.com

Joseph Waksberg

- U.S. Census Bureau, 1940-1973
- Westat, 1973-2006
- Themes
 - Coverage
 - Better estimates for lower cost
 - Use all available data resources
- Multiple-Frame Surveys

Outline

- National Survey of America's Families (Waksberg survey)
- Assumptions for classical multiple-frame (MF) surveys
- Calibration of MF surveys
- MF surveys as organizing principle for combining data
- Implications for design

National Survey of America's Families (1997)

- Waksberg et al. (1997, JSM Proceedings)
- Motivation: Evaluate effects of 1996 welfare program changes
- US civilian noninstitutional population under age 65
- Emphasis: Families with children below 200% of poverty
- National estimates plus separate estimates for each of 13 states
- Goal: Effective sample size of 800 poor children in each state
- Oversample poor families with children (about 1 in 8 families)

NSAF Design Options

- Area Frame
 - Full coverage
 - Expensive to screen for poverty

RDD Frame

- Much less expensive to screen
- But thought that 20% of poor families have no telephone
- Do nontelephone families differ from telephone families?
- Dual Frame

NSAF Design

- Restrict area frame to census blocks with high nontelephone
- Main sample from RDD frame
- Independent sample from area frame, screen out telephone HHs
- Screening dual-frame survey
- If screening accurate, this is stratified sample

Some Multiple-Frame Designs

Assumptions for Classical MF Surveys

- Union of frames **covers** population
- Full-response probability sample taken from each frame
- Samples from frames are selected independently
- Domain membership known for each sampled unit
- Estimators of population totals in each domain are **unbiased**
- No measurement error. y_i (Sample j) = y_i (Sample k)

Estimation for Classical MF Surveys

- If assumptions met, main problem is to account for overlap
- Domain {1,2} in both samples
- Adjust weights for multiplicity
- Lots of estimators
- See Lohr (2011) for review

Some Estimators for Population Total Y

• Optimal (Hartley, 1962)

 $\widehat{Y} = \widehat{Y}_{\{1\}} + \widehat{Y}_{\{2\}} + \theta \widehat{Y}_{\{1,2\}} + (1 - \theta) \widehat{Y}_{\{1,2\}}$ $\theta \text{ chosen to minimize } V(\widehat{Y})$

- Screening, $\theta = 0$ or 1
- $\theta = 1/2$
- Effective sample size, $\theta = \tilde{n} / (\tilde{n} + \tilde{n})$
- Weight by estimated overall selection prob

Adjust Weights for Multiplicity

- Start with sampling weights w_i, w_i
- Simple multiplicity adjustment, $\theta \in [0,1]$

•
$$\widetilde{w}_{i} = \begin{cases} w_{i}, & i \in \{1\} \\ \theta w_{i}, & i \in \{1,2\} \end{cases}$$

• $\widetilde{w}_{i} = \begin{cases} w_{i}, & i \in \{2\} \\ (1-\theta) w_{i}, & i \in \{1,2\} \end{cases}$

• Weights reduced in overlap domains

Calibration

- Skinner (1991) raking
- Ranalli et al. (2016), general calibration
- Auxiliary vector \boldsymbol{x} with known population totals \boldsymbol{X}
- Start with multiplicity-adjusted weights, $\widetilde{w}_i, \widetilde{w}_i, \dots$
- Calibrated weight, Frame 1:

• $c_i = \widetilde{w}_i \left[1 + \left(X - \widehat{X} \right)' \left(\sum_{i \in S_1} \widetilde{w}_i x_i x_i' + \sum_{i \in S_2} \widetilde{w}_i x_i x_i' \right)^{-1} x_i \right]$

• Repeat for all samples

Calibration Considerations

- InfoU and InfoS (Särndal & Lundström, 2005)
- InfoU: known for population and for every respondent
- InfoS: known for every member of selected sample
- MF: have InfoU and InfoS for each sample, and for merged samples
- National Survey of America's Families
 - Rich auxiliary information for area frame
 - Little auxiliary information for RDD frame
- Or, may have
 - Little auxiliary information for complete frame
 - Rich auxiliary information for incomplete list frame

Multi-Step Calibration

More robust to model misspecification (Haziza & Lesage, 2016)

- 1. Calibrate individual samples to InfoS (nonresponse adjustments)
- 2. Calibrate individual samples to InfoU (poststratification)
- 3. Calculate multiplicity weight adjustments (Calibration may change relative effective sample sizes)
- 4. Calibrate to InfoU for full population

Special Case of MF Survey

- Sample from Frame 2 is a census
 - Administrative records
 - Convenience sample
- Lohr (2014); Kim and Tam (2020)
- Undercoverage from Frame 2 remedied by Frame 1
- If MF assumptions met, statistical properties come from Sample 1 design; Sample 2 has no sampling error

Beyond Classical MF Surveys

- Framework for data integration methods by relaxing assumptions
- Some data sources are not probability samples
- Citro (2014); Lohr & Raghunathan (2017); Zhang & Chambers (2019); Thompson (2019); Beaumont (2020); Yang & Kim (2020); Rao (2021); many more
- Small area estimation
- Mass imputation
- Capture-recapture estimation

Small Area Estimation

MF Assumptions

- ✓ Coverage
- ✓ Probability sample
- ✓Independent samples
- ✓ Domain membership known
 - Unbiased estimates (Sample 1) No measurement error (Sample 1)

 $\theta \hat{Y}_a + (1 - \theta) x_a' \hat{\beta}$ θ varies across areas

Mass Imputation and Sample Matching

- Want to estimate *Y*
- Sample 1 measures x
- Sample 2 measures y and x
- Prediction model from Sample 2 $\tilde{y} = \hat{g}(\mathbf{x})$

$$\tilde{Y}_{\{d\}} = \sum_{\{d\}} w_i \tilde{y}_i$$
$$\hat{Y}_{imp} = \tilde{Y}_{\{1\}} + \theta \tilde{Y}_{\{1,2\}} + (1-\theta) \hat{Y}_{\{1,2\}}$$

Mass Imputation, Sample Matching

- Rivers (2007)
- Kim & Rao (2012)
- Chipperfield et al. (2012)
- Bethlehem (2016)
- Kim & Tam (2020)
- Yang et al. (2021)

Mass Imputation

- **MF** Assumptions
- ✓ Coverage
- ✓ Probability sample
- ✓ Independent samples
- ✓ Domain membership known
 - Unbiased estimates (Sample 2)
 - No measurement error (Sample 2)
- ? Model applies to domain {1}

Generic Theorem

- If y = g(x) is true prediction model, then estimates computed from imputed data have Good Properties
 - Approximately unbiased
 - Variance depends on sampling variances and model
- But what if model is wrong?
- Y. Lu (2014)
 - Regression in MF surveys
 - No reason to believe relationship is same across domains

Imputation and the NSAF

- Estimate percentage of children in poverty
- Pretend poverty not measured in area frame and impute it
- Imputation models fit to RDD sample using demographic variables

Imput	ation M	odel 1	Imputation Model 2			
RDD	Area	Full	RDD	Area	Full	
38.6	30.5	38.1	38.6	51.9	39.5	

Imputation and the NSAF

Imputation Model 1			Imputation Model 2			Actual Data		
RDD	Area	Full	RDD	Area	Full	RDD	Area	Full
38.6	30.5	38.1	38.6	51.9	39.5	38.6	93.4	42.2

- Lack of telephone highly associated with poverty
- That association cannot be estimated from RDD sample
- Auxiliary information not rich enough to predict y
- Without area frame sample, no way to detect the bias

Domain Misclassification

- Know domain for RDD frame
- Area frame: "Is there a working telephone in this household?"
- If no, hand respondent cell phone to talk to CATI interviewer
- 7% excluded at CATI interview because really had telephone
- Area-frame HHs who said they have telephone but did not?

24

Domain Misclassification

- Even small amount of domain misclassification can lead to bias
- Bias depends on
 - Differences among domain means
 - Misclassification probabilities
- Remedies and diagnostics?
 - Estimate misclassification probabilities from external source (Lohr, 2011)
 - Estimate probability unit *i* belongs to domain *d* (Kim & Tam, 2020)
 - Match sample with high-quality probability sample to evaluate frame overlap (Dever, 2018)

Indirect Sampling, Capture-Recapture

- Lavallée & Rivest (2012)
- Individual frames contain links to members of target population
- Alleva et al. (2020) proposed using multiple frames to estimate number of people infected with SARS-CoV-2
 - Frame 1: general population frame
 - Frame 2: persons with verified infections
 - Look at contacts of infected persons in both samples

Indirect Sampling

- Sampling frames contain different types of units
- Units in frames can be linked to multiple units in target population
- Adjust for multiplicity of
 - Links to individual frames
 - Multiple frame links
- Can use to estimate population size

Design of Data Collection Systems

- Hartley (1962) derived n_1, n_2, θ to minimize $V(\hat{Y})$
 - MF design helps when Frame 2 cheap to sample and overlap domain large
- Area frame + RDD frame
 - Biemer (1984), Choudhry (1989), Lepkowski & Groves (1986)
- Nonsampling errors
 - Brick et al. (2011), B. Lu et al. (2013), Lohr & Brick (2014)

Multiple Goals

- Estimate key population quantities with sufficient accuracy
- Assess nonsampling errors from different data sources
- Provide information to improve future data collections
- Be adaptable for future needs
 - Take advantage of new data sources
 - Continuity of time series
 - Will today's data sources be available tomorrow?

Design Issues

- Quality and stability of data sources
 - Classical MF theory assumes fixed frames
 - What if frame changes over time (web-scraped prices)?
- Measurement of domain membership
 - Collect rich auxiliary data
 - Robust designs?

Design Issues

- Does union of frames provide full coverage?
- Relative amounts of information for different domains
 - Greatly unequal weights
 - $w_i = 1, w_i = 6000$
 - Equity

Rule # 3 for Random Housekeepers

Each time you give the house a good goingover, start with a different room.

It is quite likely that you'll peter out, you know, after a few hours' slogging, and this rule insures that you will at least peter out in a different place each time. (If you stopped in the *same* place, year after year, for instance just before you got to the back bedroom, you would eventually have to saw it off.)

Peg Bracken (1962)

Design Issues

- Redundancy
 - If we have census of Frame 2, optimal design for Frame 1 screens out Frame-2 units
 - But what if measurement errors?
 - Or bias?

Census of Frame 2

Redundancy

- Frame 1 complete, SRS
- Frame 2 incomplete, census
- $p_{\{1\}} = 0.2$
- $p_{\{1,2\}} = 0.3$ (bias in Frame 2)
- $\hat{Y}_{\{1\}} + \theta \hat{Y}_{\{1,2\}} + (1 \theta) \hat{Y}_{\{1,2\}}$
 - $\theta = 1$ (only Frame 1)
 - $-\theta = 1/2$
 - $\theta = 0$ (only Frame 2)

Design Issues

• Robustness to design assumptions

"Do not treat statistical procedures as mechanical operations; be prepared for the unexpected" (Waksberg, 1998)

- Rich auxiliary information
 - Design
 - Domain membership

Multiple-Frame Surveys

- Organizing structure for designing and evaluating data systems
- Waksberg: Sampling statisticians should

"think not only about the specific questions that are asked, but the broader aspects of these questions: whether the questions make sense and can be solved, or whether they should be modified or changed."

Thank you!

Slides and References www.sharonlohr.com